Mining utility-oriented association rules: An efficient approach based on profit and quantity
نویسندگان
چکیده
Association rule mining has been an area of active research in the field of knowledge discovery and numerous algorithms have been developed to this end. Of late, data mining researchers have improved upon the quality of association rule mining for business development by incorporating the influential factors like value (utility), quantity of items sold (weight) and more, for the mining of association patterns. In this paper, we propose an efficient approach based on weight factor and utility for effectual mining of significant association rules. Initially, the proposed approach makes use of the traditional Apriori algorithm to generate a set of association rules from a database. The proposed approach exploits the anti-monotone property of the Apriori algorithm, which states that for a k-itemset to be frequent all (k-1) subsets of this itemset also have to be frequent. Subsequently, the set of association rules mined are subjected to weightage (W-gain) and utility (U-gain) constraints, and for every association rule mined, a combined utility weighted score (UW-Score) is computed. Ultimately, we determine a subset of valuable association rules based on the UW-Score computed. The experimental results demonstrate the effectiveness of the proposed approach in generating high utility association rules that can be lucratively applied for business development.
منابع مشابه
A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملCSHURI - Modified HURI algorithm for Customer Segmentation and Transaction Profitability
Association rule mining (ARM) is the process of generating rules based on the correlation between the set of items that the customers purchase.Of late, data mining researchers have improved upon the quality of association rule mining for business development by incorporating factors like value (utility), quantity of items sold (weight) and profit. The rules mined without considering utility val...
متن کاملHigh Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences
Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...
متن کاملHigh Utility Rare Itemset Mining (huri): an Approach for Extracting High-utility Rare Item Sets
Association Rule Mining (ARM) is a well-studied technique that identifies frequent itemsets from datasets and generates association rules by assuming that all items have the same significance and frequency of occurrence without considering their utility. But in a number of real-world applications such as retail marketing, medical diagnosis, client segmentation etc., utility of itemsets is based...
متن کاملAn Incremental High-Utility Mining Algorithm with Transaction Insertion
Association-rule mining is commonly used to discover useful and meaningful patterns from a very large database. It only considers the occurrence frequencies of items to reveal the relationships among itemsets. Traditional association-rule mining is, however, not suitable in real-world applications since the purchased items from a customer may have various factors, such as profit or quantity. Hi...
متن کامل